skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De Sa, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kamalika Chaudhuri, Stefanie Jegelka (Ed.)
    While low-precision optimization has been widely used to accelerate deep learning, low-precision sampling remains largely unexplored. As a consequence, sampling is simply infeasible in many large-scale scenarios, despite providing remarkable benefits to generalization and uncertainty estimation for neural networks. In this paper, we provide the first study of low-precision Stochastic Gradient Langevin Dynamics (SGLD), showing that its costs can be significantly reduced without sacrificing performance, due to its intrinsic ability to handle system noise. We prove that the convergence of low-precision SGLD with full-precision gradient accumulators is less affected by the quantization error than its SGD counterpart in the strongly convex setting. To further enable low-precision gradient accumulators, we develop a new quantization function for SGLD that preserves the variance in each update step. We demonstrate that low-precision SGLD achieves comparable performance to full-precision SGLD with only 8 bits on a variety of deep learning tasks. 
    more » « less
  2. Ranzato, M.; Beygelzimer, A.; Dauphin Y.; Liang, P.S.; Wortman Vaughan, J. (Ed.)
    Hyperbolic space is particularly useful for embedding data with hierarchical structure; however, representing hyperbolic space with ordinary floating-point numbers greatly affects the performance due to its \emph{ineluctable} numerical errors. Simply increasing the precision of floats fails to solve the problem and incurs a high computation cost for simulating greater-than-double-precision floats on hardware such as GPUs, which does not support them. In this paper, we propose a simple, feasible-on-GPUs, and easy-to-understand solution for numerically accurate learning on hyperbolic space. We do this with a new approach to represent hyperbolic space using multi-component floating-point (MCF) in the Poincar{\'e} upper-half space model. Theoretically and experimentally we show our model has small numerical error, and on embedding tasks across various datasets, models represented by multi-component floating-points gain more capacity and run significantly faster on GPUs than prior work. 
    more » « less
  3. Training example order in SGD has long been known to affect convergence rate. Recent results show that accelerated rates are possible in a variety of cases for permutation-based sample orders, in which each example from the training set is used once before any example is reused. In this paper, we develop a broad condition on the sequence of examples used by SGD that is sufficient to prove tight convergence rates in both strongly convex and non-convex settings. We show that our approach suffices to recover, and in some cases improve upon, previous state-of-the-art analyses for four known example-selection schemes: (1) shuffle once, (2) random reshuffling, (3) random reshuffling with data echoing, and (4) Markov Chain Gradient Descent. Motivated by our theory, we propose two new example-selection approaches. First, using quasi-Monte-Carlo methods, we achieve unprecedented accelerated convergence rates for learning with data augmentation. Second, we greedily choose a fixed scan-order to minimize the metric used in our condition and show that we can obtain more accurate solutions from the same number of epochs of SGD. We conclude by empirically demonstrating the utility of our approach for both convex linear-model and deep learning tasks. Our code is available at: https://github.com/EugeneLYC/qmc-ordering. 
    more » « less
  4. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    After training complex deep learning models, a common task is to compress the model to reduce compute and storage demands. When compressing, it is desirable to preserve the original model's per-example decisions (e.g., to go beyond top-1 accuracy or preserve robustness), maintain the network's structure, automatically determine per-layer compression levels, and eliminate the need for fine tuning. No existing compression methods simultaneously satisfy these criteria---we introduce a principled approach that does by leveraging interpolative decompositions. Our approach simultaneously selects and eliminates channels (analogously, neurons), then constructs an interpolation matrix that propagates a correction into the next layer, preserving the network's structure. Consequently, our method achieves good performance even without fine tuning and admits theoretical analysis. Our theoretical generalization bound for a one layer network lends itself naturally to a heuristic that allows our method to automatically choose per-layer sizes for deep networks. We demonstrate the efficacy of our approach with strong empirical performance on a variety of tasks, models, and datasets---from simple one-hidden-layer networks to deep networks on ImageNet. 
    more » « less
  5. Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the lossiness: an 88 quantization table (Q-table) decides both the quality of the encoded image and the compression ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that are “better” for specific vision networks and can offer better quality–size trade-offs than ones designed for human perception or minimal distortion. We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is fixed, or improve accuracy up to 2% at the same compression rate. 
    more » « less